251 research outputs found

    Dielectric Behavior of Nonspherical Cell Suspensions

    Full text link
    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, whereas the high-frequency one was independent of it. The cell shape effect was qualitatively simulated by an ellipsoidal cell model. However, the comparison between theory and experiment was far from being satisfactory. In an attempt to close up the gap between theory and experiment, we considered the more realistic cells of spherocylinders, i.e., circular cylinders with two hemispherical caps at both ends. We have formulated a Green function formalism for calculating the spectral representation of cells of finite length. The Green function can be reduced because of the azimuthal symmetry of the cell. This simplification enables us to calculate the dispersion spectrum and hence access the effect of cell structure on the dielectric behavior of cell suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of the American Physical Society. Accepted for publications in J. Phys.: Condens. Matte

    Information theoretic treatment of tripartite systems and quantum channels

    Full text link
    A Holevo measure is used to discuss how much information about a given POVM on system aa is present in another system bb, and how this influences the presence or absence of information about a different POVM on aa in a third system cc. The main goal is to extend information theorems for mutually unbiased bases or general bases to arbitrary POVMs, and especially to generalize "all-or-nothing" theorems about information located in tripartite systems to the case of \emph{partial information}, in the form of quantitative inequalities. Some of the inequalities can be viewed as entropic uncertainty relations that apply in the presence of quantum side information, as in recent work by Berta et al. [Nature Physics 6, 659 (2010)]. All of the results also apply to quantum channels: e.g., if \EC accurately transmits certain POVMs, the complementary channel \FC will necessarily be noisy for certain other POVMs. While the inequalities are valid for mixed states of tripartite systems, restricting to pure states leads to the basis-invariance of the difference between the information about aa contained in bb and cc.Comment: 21 pages. An earlier version of this paper attempted to prove our main uncertainty relation, Theorem 5, using the achievability of the Holevo quantity in a coding task, an approach that ultimately failed because it did not account for locking of classical correlations, e.g. see [DiVincenzo et al. PRL. 92, 067902 (2004)]. In the latest version, we use a very different approach to prove Theorem

    Sized Types for low-level Quantum Metaprogramming

    Full text link
    One of the most fundamental aspects of quantum circuit design is the concept of families of circuits parametrized by an instance size. As in classical programming, metaprogramming allows the programmer to write entire families of circuits simultaneously, an ability which is of particular importance in the context of quantum computing as algorithms frequently use arithmetic over non-standard word lengths. In this work, we introduce metaQASM, a typed extension of the openQASM language supporting the metaprogramming of circuit families. Our language and type system, built around a lightweight implementation of sized types, supports subtyping over register sizes and is moreover type-safe. In particular, we prove that our system is strongly normalizing, and as such any well-typed metaQASM program can be statically unrolled into a finite circuit.Comment: Presented at Reversible Computation 2019. Final authenticated publication is available online at https://doi.org/10.1007/978-3-030-21500-2_

    Miniature solid-state switched spiral generator for the cost effective, programmable triggering of large scale pulsed power accelerators

    Get PDF
    This paper presents the design and testing of several different configurations of spiral generator, designed to trigger high current switches in the next generation of pulsed power devices. In particular, it details the development of spiral generators that utilize new ultrafast thyristor technology as an input switch, along with a polarity dependent output gap to improve the efficiency of the spiral generator design. The generator produced 50 kV from a 3.6 kV charging voltage, with a rise time of only 50 ns and a jitter of 1.3 ns—directly comparable, if not better than, a generator employing a triggered spark gap as the input switch. The output gap was constructed in house from commonly available components and a 3D printed case, and showed remarkable repeatability and stability—simple alterations to the output gap could further reduce the rise time. The entire spiral generator, along with control and charging electronics, fitted into a case only 210 × 145 × 33     mm

    Off-Diagonal Deformations of Kerr Metrics and Black Ellipsoids in Heterotic Supergravity

    Full text link
    Geometric methods for constructing exact solutions of motion equations with first order α\alpha ^{\prime} corrections to the heterotic supergravity action implying a non-trivial Yang-Mills sector and six dimensional, 6-d, almost-K\"ahler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections. In particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-K\"ahler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in 4-d and to generalize the solutions to non-vacuum configurations in (super) gravity/ string theories.Comment: latex2e, 44 pages with table of content, v2 accepted to EJPC with minor typos modifications requested by editor and referee and up-dated reference

    Topology of amorphous tetrahedral semiconductors on intermediate lengthscales

    Full text link
    Using the recently-proposed ``activation-relaxation technique'' for optimizing complex structures, we develop a structural model appropriate to a-GaAs which is almost free of odd-membered rings, i.e., wrong bonds, and possesses an almost perfect coordination of four. The model is found to be superior to structures obtained from much more computer-intensive tight-binding or quantum molecular-dynamics simulations. For the elemental system a-Si, where wrong bonds do not exist, the cost in elastic energy for removing odd-membered rings is such that the traditional continuous-random network is appropriate. Our study thus provides, for the first time, direct information on the nature of intermediate-range topology in amorphous tetrahedral semiconductors.Comment: 4 pages, Latex and 2 postscript figure

    A simple protocol for fault tolerant verification of quantum computation

    Get PDF
    With experimental quantum computing technologies now in their infancy, the search for efficient means of testing the correctness of these quantum computations is becoming more pressing. An approach to the verification of quantum computation within the framework of interactive proofs has been fruitful for addressing this problem. Specifically, an untrusted agent (prover) alleging to perform quantum computations can have his claims verified by another agent (verifier) who only has access to classical computation and a small quantum device for preparing or measuring single qubits. However, when this quantum device is prone to errors, verification becomes challenging and often existing protocols address this by adding extra assumptions, such as requiring the noise in the device to be uncorrelated with the noise on the prover's devices. In this paper, we present a simple protocol for verifying quantum computations, in the presence of noisy devices, with no extra assumptions. This protocol is based on post hoc techniques for verification, which allow for the prover to know the desired quantum computation and its input. We also perform a simulation of the protocol, for a one-qubit computation, and find the error thresholds when using the qubit repetition code as well as the Steane code

    Reconstructia sanului dupa diferitele proceduri chirurgicale adresate cancerului mamar

    Get PDF
    Spitalul Clinic de Urgenţă “Bagdasar-Arseni” Bucureşti, România, Spitalul Clinic de urgenţă “Sf. Pantelimon” Bucureşti, România, Spitalul Judeţean de Urgenţă Piteşti, România, Al XI-lea Congres al Asociației Chirurgilor „Nicolae Anestiadi” din Republica Moldova și cea de-a XXXIII-a Reuniune a Chirurgilor din Moldova „Iacomi-Răzeșu” 27-30 septembrie 2011Introducere. Dintre neoplaziile intalnite la femeie, cancerul mamar o reprezinta pe cea mai frecventa incidenta acestuia fiind in crestere in ultimele decenii. Chirurgia de conservare a sanului este acum larg acceptata drept tratamentul de electie in cancerul mamar.Actualmente, cancerul mamar este abordat in echipe pluridisciplinare, reconstructia dupa diferitele tipuri de interventii de exereza fiind preferata in majoritatea cazurilor. Se are in vedere reconstructia volumului sanului, simetrizarea sanului nou format cu cel controlateral si reconstructia placii areolo-mamare. Material si metoda. Lucrarea de fata are la baza studiul retrospectiv al unui numar de 7 cazuri de cancer mamar tratate in Spitalul Clinic de Urgenta “Bagdasar-Arseni” in intervalul Iunie 2008 – Iunie 2011. Au fost luate in calcul atat cazurile la care s-au facut in cadrul aceleasi interventii chirurgicale, cat si cazurile la care reconstructia s-a facut la un anumit interval distanta.Rezultate. Rezultatele au fost bune in cadrul ambelor tehnici – reconstructie imediata dupa ablatie si reconstructie la distanta – insa procentul complicatiilor asociate a fost mai mare pentru reconstructia la distanta, in mare masura datorita remanierilor tisulare aparute intre cele doua interventii chirurgicale. Mortalitatea a fost 0, iar in cadrul morbiditatii am intalnit un caz cu necroza parcelara ce a necesitat o reinterventie pentru grefare si un caz de limforagie persistenta, care odata devenit cronic, a necesitat indepartarea protezei de silicon. Concluzii.-Tehnica de reconstructie este una dificila si minutioasa, al carui rezultat favorabil este dependent atat de alegerea unei tehnici de ablatie potrivita urmata de una de reconstructie individuala cat si de colaborarea interdisciplinara intre chirurgul de chirurgie generala, chirurgul plastician si medicul oncolog- In urma cazurilor prezentate si a rezultatelor foarte bune obtinute optam pentru reconstructia imediata urmata de tratamentul chimioterapeutic specific.-Din experienta noastra consideram extrem de importante indicatia chirurgicala, tehnica pentru care se opteaza, acordul asupra abordului utilizat al membrilor echipei pluridisciplinare si urmarirea postoperatorie atenta

    From Davydov solitons to decoherence-free subspaces: self-consistent propagation of coherent-product states

    Get PDF
    The self-consistent propagation of generalized D1D_{1} [coherent-product] states and of a class of gaussian density matrix generalizations is examined, at both zero and finite-temperature, for arbitrary interactions between the localized lattice (electronic or vibronic) excitations and the phonon modes. It is shown that in all legitimate cases, the evolution of D1D_{1} states reduces to the disentangled evolution of the component D2D_{2} states. The self-consistency conditions for the latter amount to conditions for decoherence-free propagation, which complement the D2D_{2} Davydov soliton equations in such a way as to lift the nonlinearity of the evolution for the on-site degrees of freedom. Although it cannot support Davydov solitons, the coherent-product ansatz does provide a wide class of exact density-matrix solutions for the joint evolution of the lattice and phonon bath in compatible systems. Included are solutions for initial states given as a product of a [largely arbitrary] lattice state and a thermal equilibrium state of the phonons. It is also shown that external pumping can produce self-consistent Frohlich-like effects. A few sample cases of coherent, albeit not solitonic, propagation are briefly discussed.Comment: revtex3, latex2e; 22 pages, no figs.; to appear in Phys.Rev.E (Nov.2001
    corecore